Glue是一个自动化的工具,有很多优点如自动生成script,支持常见ETL操作如ApplyMapping,BYOD custom script,crawler自动识别scheme等等。相比于DataPipeline和step functions属于更高层的封装。
Glue之初感
需要的IAM role:
S3FullAccess
AWSGlueServiceRole
CloudWatchLogsFullAccess
Transformation:
可以将CSV, TXT, TSV转化成JSON,JSON的形式不是List而是每个object并排如{"city": "b"}{"city": "a"}. 反之转换也可以,但JSON的输入形式也不能是list,否则ApplyMapping等不能识别。可以支持nested JSON(三层以上均可)
Crawler:
Crawler 自动可以crawl指定bucket里面的file的metadata如column names, file type,ski header,count等等。
Custom Scripts (Spark DataFrame)
Custom transformation可以插入自定义的script,直接integrate到ETL job,但需要实现指定的API。下面是一段例子:
df = dfc.select(list(dfc.keys())[0]).toDF()
df_filtered = df.filter(df["year"] > 2018)
dyf_filtered = DynamicFrame.fromDF(df_filtered, glueContext, "filter_votes")
return (DynamicFrameCollection({"CustomTransform0": dyf_filtered}, glueContext))
去除空的row:
df_filtered = df.filter("videoName != ''")
如果出现空行,强制输出错误,返回到Glue errorMessage
if df.count != df_filtered.count:
raise ValueError('Empty row detected.')
custom script 需要和SelectFromCollection连用
Trigger:
Lambda可以作为trigger
https://aws.amazon.com/premiumsupport/knowledge-center/start-glue-job-crawler-completes-lambda/
可以用一个job succeeded event来trigger另一个job,这样就形成一个workflow
Programming:
可视化和代码可以自由转换。首先,可视化创建ETL job,然后转到scripts就看到自动生成的代码。所以只要用这个代码,就可以反过来创建ETL job
要加log的话:logger = glueContext.get_logger()
Python: https://github.com/aws-samples/aws-glue-samples/blob/master/examples/data_cleaning_and_lambda.md
Integration with AWS service: 用boto3 library
Glue API:
支持Scala和Python
Python: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
start_job_run
只要用下面命令glue start-job-run指明如job-name和scriptLocation等job参数就可以创建。返回JobRunId
$ aws glue start-job-run --job-name "CSV to CSV" --arguments='--scriptLocation="s3://my_glue/libraries/test_lib.py"'
还支持custom parameters比如--source_file_s3_path, --targetFileS3Path等最多达50个。这样就可以令pipeline更灵活和generic,支持不同的输入和输出以及变换操作。
用的时候是
args = getResolvedOptions(sys.argv, ['JOB_NAME', 'source_file_s3_path']
logger.info('path name:' + args['source_file_s3_path'])
例子:https://stackoverflow.com/questions/52316668/aws-glue-job-input-parameters
还可以设置concurrency,这样可以同时跑不同parameters对应的job。
Job parameters for CDK:
https://awscdk.io/packages/@aws-cdk/aws-glue@1.22.0/#/./@aws-cdk_aws-glue.CfnJob
Default parameters:
https://docs.amazonaws.cn/en_us/glue/latest/dg/aws-glue-programming-etl-glue-arguments.html
get_job_runs
输入参数为jobName和jobRunId,返回JobRunState(Failed, Succeeded)和errorMessage
Shared code in Glue jobs by Python lib
https://medium.com/@bv_subhash/sharing-re-usable-code-across-multiple-aws-glue-jobs-290e7e8b3025
Glue error Code:
Glue Concurrency
Timeout
Custom error
Internal Failure
Deployment:
由于ETL的Python script都是保存在S3的,所以如果代码commit到git的话就要手动上传到S3。解决方案是利用CDK里面的Assets将本地代码上传到S3. Ref
DocumentDB:
Glue可以连documentDB,用于ETL,这里我们用来做update 一个record. 需要在glue手动设置DocDB的连接。
secrets_manager_client = boto3.client("secretsmanager", region_name="us-west-2")
workflow_status = [{
"_id": job_run_id,
"statux": "xxx"
}]
workflow_status_frame = DynamicFrame.fromDF(spark.createDataFrame(workflow_status), glueContext, "nested")
db_writer(workflow_status_frame, "my_db", "workflow_status")
db_writer(df, database_name, colection_name):
write_documentdb_options = {
"uri":
"database": database_name
"collection": colection_name
....
}
glueContext.write_dynamic_frame.from_options(df, connection_type="documentdb", connection_options=write_documentdb_options)
No comments:
Post a Comment